4.8 Article

Chemotactic self-caging in active emulsions

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2122269119

关键词

chemotaxis; active matter; caging; microswimmers; self-propelling droplets

资金

  1. German Research Foundation [MA 6330/1]
  2. Max Planck School Matter to Life
  3. MaxSynBio Consortium - Federal Ministry of Education and Research of Germany
  4. Max Planck Society

向作者/读者索取更多资源

Communication through chemical signaling is a common feature in biological self-organization. In this study, self-propelling droplets are used as a model to investigate how chemically active particles modify their environment and communicate with each other. The findings show how this communication mechanism leads to a transient dynamical arrest in active emulsions and provide insights into the navigation strategy shaped by negative autochemotaxis.
A common feature of biological self-organization is how active agents communicate with each other or their environment via chemical signaling. Such communications, mediated by self-generated chemical gradients, have consequences for both individual motility strategies and collective migration patterns. Here, in a purely physicochemical system, we use self-propelling droplets as a model for chemically active particles that modify their environment by leaving chemical footprints, which act as chemorepulsive signals to other droplets. We analyze this communication mechanism quantitatively both on the scale of individual agent-trail collisions as well as on the collective scale where droplets actively remodel their environment while adapting their dynamics to that evolving chemical landscape. We show in experiment and simulation how these interactions cause a transient dynamical arrest in active emulsions where swimmers are caged between each other's trails of secreted chemicals. Our findings provide insight into the collective dynamics of chemically active particles and yield principles for predicting how negative autochemotaxis shapes their navigation strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据