4.7 Article

An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications

期刊

POLYMER COMPOSITES
卷 43, 期 8, 页码 5426-5441

出版社

WILEY
DOI: 10.1002/pc.26845

关键词

aluminum oxide; copper oxide; Lauric acid; nanocomposite phase change material; nanoparticles; PCM; phase change materials; thermal energy storage

向作者/读者索取更多资源

This study investigates the effects of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles on the thermophysical properties of lauric acid (LA), and finds that low concentrations of aluminum oxide nanoparticles significantly enhance the thermal conductivity of LA.
To improve the thermophysical properties of lauric acid (LA), several loadings of copper oxide(CuO) and aluminum oxide (Al2O3) nanoparticles (1.25, 2.5, 5, and 10 wt%) were used. In this present study, the possibility of varied concentration nanoparticles to create LA embedded nanocomposite phase change material (NPCM) with increased performance is also studied and compared. The analytical expressions for estimating both thermal conductivity (TC) and dynamic viscosity of the NPCM were devised, and the findings were confirmed against the experiment. Employing a computational fluid dynamics (CFD) model, the effects of nanoparticle concentration on LA's rate of melting and solidification are examined. The morphological structures of nanoparticles were seen using a field emission scanning electron microscope (FESEM), and their crystalline structure was determined using X-ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) was used to verify NPCMs. The impact of nanoparticles on NPCM was demonstrated by the thermal conductivity (KD2 test) findings. The current results suggest that distributing nanoparticles in lower concentrations speeds up the HTR. Compared to copper oxide (CuO) nanoparticles, the enhancement in the thermal performance of LA is more significant for aluminum oxide (Al2O3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据