4.7 Article

ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance

期刊

PLANT SCIENCE
卷 321, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2022.111256

关键词

AP2/EREBP; Epicuticular wax; Drought tolerance; Cuticle; Maize (Zea mays L.)

资金

  1. National Transgenic Major Program of China [2016ZX08003-002]
  2. National Basic Research Program of China [2012CB215301]

向作者/读者索取更多资源

This study identified a maize transcription factor, ZmEREB46, which is involved in the biosynthesis of cuticular wax and cutin metabolism. ZmEREB46 enhances drought tolerance in plants by promoting the accumulation of epicuticular wax on leaves. These findings provide insights into the regulatory network of wax accumulation in maize.
The aerial surfaces of plants are covered by a layer of cuticular wax that is composed of long-chain hydrocarbon compounds for protection against adverse environmental conditions. The current study identified a maize (Zea mays L.) APETALA2/ethylene-responsive element-binding protein (AP2/EREBP)-type transcription factor, ZmEREB46. Ectopic expression of ZmEREB46 in Arabidopsis increased the accumulation of epicuticular wax on the leaves and enhanced the drought tolerance of plants. The amounts of C24/C32 fatty acids, C32/C34 aldehydes, C32/C34 1-alcohols and C31 alkanes in zmereb46 (ZmEREB46 knockout mutant) leaves were reduced. The amount of leaf total epicuticular wax decreased approximately 50% in zmereb46. Compared to wild-type LH244 leaves, the cuticle permeability of zmereb46 leaves was increased, which resulted from decreased epicuticular wax load and a thinner cuticle layer. ZmEREB46 had transcriptional activation activity and directly bound to promoter regions of ZmCER2, ZmCER3.2 and ZmKCS1. The zmereb46 seedlings also exhibited reduced drought tolerance. These results, and the observations in ZmEREB46-overexpressing lines, suggest that ZmEREB46 is involved in cuticular metabolism by influencing the biosynthesis of very-long-chain waxes and participates in the cutin biosynthesis pathway. These results are helpful to further analyze the regulatory network of wax accumulation in maize.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据