4.7 Article

Drag reduction by flapping a flexible filament behind a stationary cylinder

期刊

PHYSICS OF FLUIDS
卷 34, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0101446

关键词

-

资金

  1. National Research Foundation of Korea
  2. China Scholarship Council
  3. [2020R1A2C2008106]
  4. [202006230245]

向作者/读者索取更多资源

This study investigated the hydrodynamic mechanism of drag reduction by flapping a flexible filament behind a stationary cylinder using the penalty immersed boundary method. The effects of filament parameters on drag reduction were examined, and three distinct flapping modes were observed. The oscillation and undulation modes were found to be more beneficial for drag reduction than the vortex-dominated mode.
The hydrodynamic mechanism of drag reduction by flapping a flexible filament behind a stationary cylinder was explored using the penalty immersed boundary method. The effects of the filament length, bending rigidity, pitching amplitude, and frequency on drag reduction were systematically examined. We analyzed the underlying mechanism of drag reduction in detail by examining flapping modes, wake patterns, pressure distributions, and flapping dynamics of the flapping filament. The flapping motion of the flexible filament is determined by the combined effect of forcing parameters and the surrounding flow. Three distinct flapping modes are observed when the aforementioned parameters are varied: an oscillation mode, an undulation mode, and a vortex-dominated mode. The oscillation and undulation modes are more beneficial to drag reduction than the vortex-dominated mode. In the oscillation mode, drag reduction is mainly realized by the high thrust generated by the filament overwhelming the increased form drag of the cylinder caused by the trailing edge vortex. A flexible filament flapping in the oscillation mode generates thrust more efficiently. In the undulation mode, a long filament reduces the form drag of the cylinder and generates relatively low thrust, showing a similar drag reduction as a short oscillating filament. In the vortex-dominated mode, the thrust of the filament is very low because of the weakened trailing edge vortex, yielding a weakened drag reduction effect. Published under an exclusive license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据