4.8 Article

Intersubband Polariton-Polariton Scattering in a Dispersive Microcavity

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.247401

关键词

-

资金

  1. European Union Future and Emerging Technologies (FET) [737017]
  2. French RENATECH network
  3. Deutsche Forschungsgemeinschaft [HU1598/8]

向作者/读者索取更多资源

The ultrafast scattering dynamics of intersubband polaritons in dispersive cavities embedding GaAs/AlGaAs quantum wells were directly studied using a noncollinear pump-probe geometry with phase-stable midinfrared pulses. Selective excitation of the lower polariton at a frequency of similar to 25 THz and at a finite in-plane momentum k(parallel to) resulted in the emergence of a narrowband maximum in the probe reflectivity at k(parallel to) = 0. A quantum mechanical model identified the underlying microscopic process as stimulated coherent polariton-polariton scattering.
The ultrafast scattering dynamics of intersubband polaritons in dispersive cavities embedding GaAs/AlGaAs quantum wells are studied directly within their band structure using a noncollinear pump-probe geometry with phase-stable midinfrared pulses. Selective excitation of the lower polariton at a frequency of similar to 25 THz and at a finite in-plane momentum k(parallel to) leads to the emergence of a narrowband maximum in the probe reflectivity at k(parallel to) = 0. A quantum mechanical model identifies the underlying microscopic process as stimulated coherent polariton-polariton scattering. These results mark an important milestone toward quantum control and bosonic lasing in custom-tailored polaritonic systems in the mid and far infrared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据