4.7 Article

Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods

期刊

JOURNAL OF DAIRY SCIENCE
卷 99, 期 3, 页码 1959-1967

出版社

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2015-10012

关键词

methane; dairy cattle; heritability

资金

  1. Independent Danish Research Council \ Technology and Production (Copenhagen, Denmark) [11-105913]

向作者/读者索取更多资源

The objective of this study was to estimate heritability of enteric methane emissions from dairy cattle. Methane (CH4) and CO2 were measured with a portable air-sampler and analyzer unit based on Fourier transform infrared detection. Data were collected on 3,121 Holstein dairy cows from 20 herds using automatic milking systems. Three CH4 phenotypes were acquired: the ratio between CH4 and CO2 in the breath of the cows (CH4_RATIO), the estimated quantified amount of CH4 (in g/d) measured over a week (CH4_GRAMSw), and CH4 intensity, defined as grams of CH4 per liter of milk produced (CH4_MILK). Fat- and protein-corrected milk (FPCM) and live weight data were also derived for the analysis. Data were analyzed using several univariate and bivariate linear animal models. The heritability of CH4_GRAMSw and CH4_MILK was 0.21 with a standard error of 0.06, and the heritability of CH4_RATIO was 0.16 with a standard error of 0.04. The 2 CH4 traits CH4_GRAMSw and CH4_RATIO were genetically highly correlated (r(g) = 0.83) and they were strongly correlated with FPCM, meaning that, in this study, a high genetic potential for milk production will also mean a high genetic potential for CH4 production. The genetic correlation between CH4_MILK and FPCM and live weight showed similar patterns as the other CH4 phenotypes, although the correlations in general were closer to zero. The genetic correlations between the 3 CH4 phenotypes and live weight were low and only just significantly different from zero, meaning there is less indication of a genetic relationship between CH4 emission and live weight of the cow. None of the residual correlations between the ratio of CH4 and CO2, CH4 production in grams per day, FPCM, and live weight were significantly different from zero. The results from this study suggest that CH4 emission is partly under genetic control, that it is possible to decrease CH4 emission from dairy cattle through selection, and that selection for higher milk yield will lead to higher genetic merit for CH4 emission/cow per day.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据