4.6 Article

High-fidelity intensity diffraction tomography with a non-paraxial multiple-scattering model

期刊

OPTICS EXPRESS
卷 30, 期 18, 页码 32808-32821

出版社

Optica Publishing Group
DOI: 10.1364/OE.469503

关键词

-

类别

资金

  1. National Science Foundation [1846784]
  2. Directorate For Engineering
  3. Div Of Electrical, Commun & Cyber Sys [1846784] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this study, a novel IDT reconstruction algorithm based on the SSNP model is proposed for recovering the 3D refractive index distribution of multiple-scattering biological samples. The algorithm accurately computes multiple scattering from high-angle illumination and is applied to both sequential and multiplexed IDT techniques. Experimental results demonstrate the effectiveness and computational efficiency of the algorithm.
We propose a novel intensity diffraction tomography (IDT) reconstruction algorithm based on the split-step non-paraxial (SSNP) model for recovering the 3D refractive index (RI) distribution of multiple-scattering biological samples. High-quality IDT reconstruction requires high-angle illumination to encode both low- and high- spatial frequency information of the 3D biological sample. We show that our SSNP model can more accurately compute multiple scattering from high-angle illumination compared to paraxial approximation-based multiple-scattering models. We apply this SSNP model to both sequential and multiplexed IDT techniques. We develop a unified reconstruction algorithm for both IDT modalities that is highly computationally efficient and is implemented by a modular automatic differentiation framework. We demonstrate the capability of our reconstruction algorithm on both weakly scattering buccal epithelial cells and strongly scattering live C. elegans worms and live C. elegans embryos. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据