4.6 Article

Transmission characteristics of femtosecond laser pulses in a polymer waveguide

期刊

OPTICS EXPRESS
卷 30, 期 17, 页码 31396-31406

出版社

Optica Publishing Group
DOI: 10.1364/OE.467884

关键词

-

类别

向作者/读者索取更多资源

This study demonstrates that a polymer waveguide fabricated under simple and low-cost technology can effectively transmit femtosecond laser pulses and achieve high coupling efficiency with optical fibers.
Femtosecond lasers have been widely employed in scientific and industrial applications, including the study of material properties, fabrication of structures on the sub-micrometer scale, surgical and medical treatment, etc. In these applications, the ultrafast laser is implemented either in free space or via an optical fiber-based channel. To investigate the light-matter interaction on a chip-based dimension, laser pulses with extremely high peak power need to be injected into an integrated optical waveguide. This requires the waveguide to be transparent and linear at this power, but also capable of providing a highly efficient and reliable interface for fiber-chip coupling. Contrary to the common belief that polymer materials may suffer from stability issues, we show that a polymer waveguide fabricated under simple and low-cost technology using only commercial materials can indeed transmit femtosecond laser pulses with similar characteristics as low-power continuous-wave laser. The coupling efficiency with a lensed fiber is similar to 76% per facet. The pulse broadening effect in the polymer waveguide is also well fitted by the material and waveguide dispersion without nonlinear behavior. This study paves the way for developing a low-cost, highly efficient, polymer-based waveguide platform for the investigation of ultrafast phenomena on a chip. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据