4.7 Article

Design and output power evaluation for a novel hybrid wave-wind energy converter

期刊

OCEAN ENGINEERING
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2022.111573

关键词

Wave energy converter; Oscillating water column; Windcatcher; CFD; RANS

向作者/读者索取更多资源

In this paper, a novel system combining a windcatcher with a conventional oscillating water column (OWC) is proposed to increase airflow rate and output power. The hydrodynamic behavior of the proposed system is investigated using a nonlinear computational fluid dynamics (CFD) model. Results show a significant increase in airflow rate and consistent power generation in the proposed hybrid system compared to a conventional type.
The performance of oscillating water column (OWC) wave energy converters (WEC) is highly affected by airflow rate. In this paper, a novel system is proposed that increases airflow rate and, therefore, output power through the integration of a mechanical structure known as a windcatcher with a conventional OWC. To investigate the hydrodynamic behaviour of the proposed system, a non-linear two-dimensional computational fluid dynamics (CFD) model is employed, along with the Reynolds Averaged Navier-Stokes (RANS) approach. The results of a comparison of the proposed OWC to a conventional type reveal a significant increase in airflow rate through the turbine blades, realizing an increase in converter output power. Moreover, the results show a power generation consistency in the proposed hybrid system, as the amplitude of the oscillatory part of the turbine airflow rate is diminished. Therefore, the proposed OWC converter not only generates significantly more power than a conventional type, it also has smoother power generation performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据