4.7 Article

Integrating human brain proteomic data with genome-wide association study findings identifies novel brain proteins in substance use traits

期刊

NEUROPSYCHOPHARMACOLOGY
卷 47, 期 13, 页码 2292-2299

出版社

SPRINGERNATURE
DOI: 10.1038/s41386-022-01406-1

关键词

-

资金

  1. Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center
  2. NIH [DA046345, AA028292, AA02636]

向作者/读者索取更多资源

This study identified genes associated with substance use traits and investigated their impact on protein abundance and transcript levels in the brain. The findings suggest that these genes may play a role in the genetic risk for substance use disorders and could serve as potential targets for medication development and biomarkers.
Despite the identification of a growing number of genetic risk loci for substance use traits (SUTs), the impact of these loci on protein abundance and the potential utility of relevant proteins as therapeutic targets are unknown. We conducted a proteome-wide association study (PWAS) in which we integrated human brain proteomes from discovery (Banner; N = 152) and validation (ROSMAP; N = 376) datasets with genome-wide association study (GWAS) summary statistics for 4 SUTs. The 4 samples comprised GWAS of European-ancestry individuals for smoking initiation [Smk] (N = 1,232,091), alcohol use disorder [AUD] (N = 313,959), cannabis use disorder [CUD] (N = 384,032), and opioid use disorder [OUD] (N = 302,585). We conducted transcriptome-wide association studies (TWAS) with human brain transcriptomic data to examine the overlap of genetic effects at the proteomic and transcriptomic levels and characterize significant genes through conditional, colocalization, and fine-mapping analyses. We identified 27 genes (Smk = 21, AUD = 3, CUD = 2, OUD = 1) that were significantly associated with cis-regulated brain protein abundance. Of these, 7 showed evidence for causality (Smk: NT5C2, GMPPB, NQO1, RHOT2, SRR and ACTR1B; and AUD: CTNND1). Cis-regulated transcript levels for 8 genes (Smk = 6, CUD = 1, OUD = 1) were associated with SUTs, indicating that genetic loci could confer risk for these SUTs by modulating both gene expression and proteomic abundance. Functional studies of the high-confidence risk proteins identified here are needed to determine whether they are modifiable targets and useful in developing medications and biomarkers for these SUTs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据