4.5 Article

Conformational buffering underlies functional selection in intrinsically disordered protein regions

期刊

NATURE STRUCTURAL & MOLECULAR BIOLOGY
卷 29, 期 8, 页码 781-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41594-022-00811-w

关键词

-

资金

  1. Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) [2013-1895, 2017-1924, 2016-4605, 2012-2550, 2015-1213]
  2. US National Institutes of Health [GM115556, CA141244, 5R01NS056114]
  3. Florida Department of Health (FLDOH) [20B17]
  4. US National Science Foundation [MCB-1614766]
  5. USF Nexus Initiative
  6. USF College of Arts and Sciences
  7. Labex EpiGenMed (Investissements d'avenir) program [ANR-10-LABX-12-01]
  8. French National Research Agency [ANR-10-INBS-04-01, ANR-10-INBS-05]
  9. Spanish Ministerio de Ciencia y Universidades MICYU-FEDER [RTI2018-097189-C2-1]
  10. Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina)
  11. Fulbright Visiting Scholar Program
  12. Ministerio de Ciencia e Innovacion, Espana [BES-2013-063991, EEBB-I-16-11670]
  13. Longer Life Foundation: A RGA/Washington University Collaboration
  14. CALMIP supercomputing center [2016-P16032]
  15. Cluster of Scientific Computing of the Miguel Hernandez University

向作者/读者索取更多资源

This study identifies the molecular mechanism of functional selection in disordered proteins and highlights the importance of conformational buffering and motif-linker coevolution for functional encoding.
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions. Foutel et. al. identify conformational buffering as a mechanism for functional selection in intrinsically disordered protein regions that allows robust encoding of a tethering function by a hypervariable disordered linker through compensatory changes in sequence length and composition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据