4.8 Article

Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking

期刊

NATURE MATERIALS
卷 21, 期 10, 页码 1121-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41563-022-01292-4

关键词

-

资金

  1. National Natural Science Foundation of China [51532001, 21905011, 51772011]

向作者/读者索取更多资源

Inspired by the heterophase structure of nacre, a centimetre-sized bulk material consisting of graphene oxide (GO) and amorphous/crystalline MnO2 nanosheets adhered together with polymer-based crosslinkers was prepared, exhibiting high flexural strength and fracture toughness. Experimental and numerical analyses revealed that the ordered heterophase structure and synergistic crosslinking interactions across multiscale interfaces contribute to the superior mechanical properties of the material.
A nacre-inspired, centimetre-sized bulk material is prepared by assembling graphene oxide and microscale amorphous/crystalline heterophase reinforcing platelets adhered together with polymer-based crosslinkers, which shows high flexural strength and fracture toughness. Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, inspired by the amorphous/crystalline feature of the heterophase within nacreous platelets, we present a centimetre-sized, GO-based bulk material consisting of building blocks of GO and amorphous/crystalline leaf-like MnO2 hexagon nanosheets adhered together with polymer-based crosslinkers. These building blocks are stacked and hot-pressed with further crosslinking between the layers to form a GO/MnO2-based layered (GML) bulk material. The resultant GML bulk material exhibits a flexural strength of 231.2 MPa. Moreover, the material exhibits sufficient fracture toughness and strong impact resistance while being light in weight. Experimental and numerical analyses indicate that the ordered heterophase structure and synergetic crosslinking interactions across multiscale interfaces lead to the superior mechanical properties of the material. These results are expected to provide insights into the design of structural materials and potential applications of high-performance GO-based bulk materials in aerospace, biomedicine and electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据