4.3 Article

Multitargeted Molecular Dynamic Understanding of Butoxypheser Against SARS-CoV-2: An in Silico Study

期刊

NATURAL PRODUCT COMMUNICATIONS
卷 17, 期 7, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1934578X221115499

关键词

Butoxypheser; MPro; receptor-binding domain; molecular docking; molecular dynamics simulation

资金

  1. DST-INSPIRE fellowship by the Department of Science & Technology, Govt. of India

向作者/读者索取更多资源

This study identifies a compound named Butoxypheser as a multi-target inhibitor against SARS-CoV-2 through screening multiple target proteins. The compound exhibits excellent activity and stable interaction patterns as demonstrated through theoretical analysis. However, further experimental validation is required for this research.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was initially reported in the Wuhan province of China, spread throughout the world, and caused massive destruction in the form of a global pandemic that started back in 2020. SARS-CoV-2 is an RNA virus with various proteins like main protease, spike protein, NSP15 endoribonuclease, RNA-dependent RNA polymerase, and papain-like protease targeted to screen and find the novel drug candidate that can potentially work against the virus. Previous studies have reported multiple drugs after screening and validation against a single target and reported multiple medications. Nevertheless, many drugs are being used to date but do not have enough potential to work against SARS-CoV-2 and curb the spread and death rate. In this study, with the hypothesis of 1 drug and multiple targets, we have taken 5 main target proteins and screened the Asinex's complete BioDesign library (1,70,269 compounds) and identified N-{2-[(2S)-2-Amino-3-methylbutoxy]-6-propylbenzoyl}-L-phenylalanyl-L-serine (Butoxypheser) as multitarget inhibitor against SARS-CoV-2. Also, Butoxypheser has shown excellent docking scores, hydrogen bonding, and other bonding configurations like van der Waals force and water bridges. The stability and interaction pattern of the compound was validated with structural interaction fingerprints (SIFts) and molecular dynamics (MD) simulation. The Butoxypheser has performed flawlessly throughout the study, and the same results were used to compare the compound's activity against multiple targets. After a thorough theoretical comparative analysis, Butoxypheser can be treated as a multitargeted inhibitor candidate against SARS-CoV-2. Further, this study needs to be validated experimentally before human use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据