4.8 Article

Interfacial synergistic effect in SnO2/PtNi nanocrystals enclosed by high-index facets for high-efficiency ethylene glycol electrooxidation

期刊

NANO RESEARCH
卷 15, 期 9, 页码 7877-7886

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-4433-0

关键词

Pt-based catalyst; high-index facets; undercoordinated surface atoms; interfacial synergistic effect; ethylene glycol electro-oxidation

资金

  1. National Natural Science Foundation of China [21573286]
  2. Key Scientific and Technological Innovation Project in Shandong Province [2019JZZY010343]

向作者/读者索取更多资源

Strengthening the oxide-metal interfacial synergistic interaction in nanocatalysts is an effective strategy to enhance the intrinsic activities and availability of active sites. In this study, SnO2/PtNi concave nanocubes enclosed by high-index facets were successfully fabricated and exhibited significantly improved catalytic performance for electrooxidation reactions. The strong interfacial interaction between SnO2 and PtNi not only reduces the activation energy barrier but also enhances the catalyst's CO-resistance and long-term stability.
Strengthening the oxide-metal interfacial synergistic interaction in nanocatalysts is identified as potential strategy to boost intrinsic activities and the availability of active sites by regulating the surface/interface environment of catalysts. Herein, the SnO2/PtNi concave nanocubes (CNCs) enclosed by high-index facets (HIFs) with tunable SnO2 composition are successfully fabricated through combining the hydrothermal and self-assembly method. The interfacial interaction between ultrafine SnO2 nanoparticles and PtNi with HIFs surface structure is characterized by analytical techniques. The as-prepared 0.20%SnO2/PtNi catalyst exhibits extraordinarily high catalytic performance for ethylene glycol electrooxidation (EGOR) in acidic conditions with specific activity of 3.06 mA/cm(2), which represents 6.2-fold enhancement compared with the state-of-the-art Pt/C catalyst. Additionally, the kinetic study demonstrates that the strong interfacial interaction between SnO(2 )and PtNi not only degrades the activation energy barrier during the process of EGOR but also enhances the CO-resistance ability and long-term stability. This study provides a novel perspective to construct highly efficient and stable electrocatalysts for energy conversions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据