4.8 Review

Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels

期刊

NANO RESEARCH
卷 15, 期 12, 页码 10090-10109

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-4705-8

关键词

photocatalysis; cocatalyst; carbon dioxide reduction; artificial photosynthesis; solar fuel production

资金

  1. JSPS Leading Initiative for Excellent Young Researchers program
  2. JST Fusion Oriented REsearch for disruptive Science and Technology program
  3. JSPS [21K20485, 20K22556]

向作者/读者索取更多资源

This review provides a comprehensive summary of recent advancements in cocatalysts for photocatalytic CO2 reduction reaction (CO2RR), offering insights and guidance for future research directions and best practices.
The global adoption of efficient sustainable energy sources is a crucial step toward meeting energy demands while achieving carbon emission reduction targets. Solar energy has become a clean and cost-competitive alternative to traditional fossil fuels, but the intermittent nature of sunlight results in challenges associated with energy storage and transport. Photocatalytic carbon dioxide reduction intends to mimic natural photosynthesis for utilizing sunlight to chemically convert water and CO2 into fuels. In this process, the solar energy is captured and stored in fuels, so-called solar fuels, for widespread on-demand use. Heterogeneous solar fuel production systems are multi-component, comprising light-harvesting (photosensitizer) and catalytic (cocatalyst) units. Cocatalysts are indispensable for photocatalytic CO2 reduction systems, which promote charge carrier separation and transport, reduce the reaction activation energy, and alter the reaction route, thereby enhancing the activity and selectivity of the photocatalytic reactions. This review presents a comprehensive summary of the recent advancements in cocatalysts for photocatalytic CO2 reduction reaction (CO2RR), with the purpose of providing new insights and guidance to the field with regard to research directions and best practices. We summarize how various cocatalysts including inorganic nanoparticles, metal complexes, enzymes, and bacteria can be combined with semiconductor photosensitizer for light-driven photocatalytic CO2RR. Side-by-side comparisons reveal the strengths and limitations of each kind of cocatalysts and how lessons extracted from studying natural photosynthetic systems can be applied to investigations of artificial photosynthesis, presenting an outlook discussing possible future concepts for a more effective photocatalytic CO2 reduction process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据