4.8 Article

Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform

期刊

NANO RESEARCH
卷 16, 期 1, 页码 1296-1303

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-4798-0

关键词

metal-organic frameworks; epitaxial growth; heterostructures; sensors; biofibers

向作者/读者索取更多资源

Integrating functional nanomaterials on nonplanar organisms is a rising technology, but interface failure and poor durability are common issues. This study presents a facile strategy to assemble crystalline catecholate frameworks on seaweed-derived polysaccharide microfibers, allowing for biomimetic connections and durable stability. The ZnO nanoarrays attached on alginate fibers serve as a sacrifice for the heteroepitaxial growth of zinc-catecholate frameworks, enabling enhanced interfacial charge transfer and the fabrication of broadband photodetectors. This work provides a promising approach for heteroepitaxial growth of catecholate frameworks on organo-substrates and opens new applications in wearable sensor platforms.
Integrating functional nanomaterials on nonplanar organisms has emerged as a rising technology, while significant mismatch would cause interface failure and poor durability. Herein, we demonstrate a facile strategy to assemble crystalline catecholate frameworks with honeycomb lattice on seaweed-derived polysaccharide microfibers, which is expected to form biomimetic connections and maintain durable stability. By physiological coagulation, well-aligned ZnO nanoarrays are tightly attached on alginate fibers, which is fractionally adopted as sacrifice for heteroepitaxial growth of zinc-catecholate frameworks (Zn-3(HHTP)(2)). Benefiting from amplification effect of in-situ formed heterojunctions, promoted interfacial charge transfer is achieved, which allows for fabricating broadband photodetectors. Combined with high porosity for gas adsorption, the heteroepitaxial catecholate framework further enables its use as highly selective ppb-level triethylamine sensors. This work provides a promising strategy for heteroepitaxial growth of catecholate frameworks on organo-substrates and opens new applications in wearable sensor platform based on comfortable biofibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据