4.8 Article

Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles

期刊

NANO LETTERS
卷 22, 期 13, 页码 5143-5150

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c00822

关键词

Wood-water interactions; Cell wall nanostructure; Cellulose crystallinity; X-ray scattering; Molecular dynamics

资金

  1. Academy of Finland's Flagship Programme [318890, 318891]
  2. Academy of Finland [315768]
  3. Academy of Finland (AKA) [315768, 315768] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Understanding nanoscale moisture interactions is crucial for the study of cellulosic nanomaterials. By combining experiments and simulations, this study investigated the effects of moisture on softwood cell walls and provided new insights. The simulation-assisted scattering analysis proved to be an efficient tool for nanoscale characterization.
Understanding nanoscale moisture interactions is fundamental to most applications of wood, including cellulosic nanomaterials with tailored properties. By combining X-ray scattering experiments with molecular simulations and taking advantage of computed scattering, we studied the moisture-induced changes in cellulose microfibril bundles of softwood secondary cell walls. Our models reproduced the most important experimentally observed changes in diffraction peak locations and widths and gave new insights into their interpretation. We found that changes in the packing of microfibrils dominate at moisture contents above 10-15%, whereas deformations in cellulose crystallites take place closer to the dry state. Fibrillar aggregation is a significant source of drying-related changes in the interior of the microfibrils. Our results corroborate the fundamental role of nanoscale phenomena in the swelling behavior and properties of wood-based materials and promote their utilization in nanomaterials development. Simulationassisted scattering analysis proved an efficient tool for advancing the nanoscale characterization of cellulosic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据