4.6 Article

Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio)

期刊

MOLECULES
卷 27, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27144493

关键词

curcumin; Pluronic; NanoCUR; toxicity; zebrafish embryo

资金

  1. Ministry of Higher Education, Malaysia, under the Fundamental Grant Research Scheme (FRGS) [FRGS/1/2018/SKK11/UPM/02/1]

向作者/读者索取更多资源

This study investigated the toxicity effects of a nanoformulation of Curcumin (NanoCUR) on the embryonic development of zebrafish. It was found that NanoCUR exhibited improved toxicity profile compared to native CUR, with delayed toxicity response and reduced generation of reactive oxygen species (ROS). These findings highlight the potential of NanoCUR for clinical applications.
Curcumin (CUR) has been studied for its biomedical applications due to its active biological properties. However, CUR has limitations such as poor solubility, low bioavailability, and rapid degradation. Thus, CUR was nanoformulated with the application of polymeric micelle. Previous studies of CUR-loaded Pluronic F127 nanoformulation (NanoCUR) were generally prioritized toward cancer cells and its therapeutic values. There are reports that emphasize the toxicity of CUR, but reports on the toxicity of NanoCUR on embryonic developmental stages is still scarce. The present study aims to investigate the toxicity effects of NanoCUR on the embryonic development of zebrafish (Danio rerio). NanoCUR was synthesized via thin film hydration method and then characterized using DLS, UV-Vis, FTIR, FESEM, and XRD. The toxicity assessment of NanoCUR was conducted using zebrafish embryos, in comparison to native CUR, as well as Pluronic F127 (PF) as the controls, and ROS assay was further carried out. It was revealed that NanoCUR showed an improved toxicity profile compared to native CUR. NanoCUR displayed a delayed toxicity response and showed a concentration- and time-dependent toxicity response. NanoCUR was also observed to generate a significantly low reactive oxygen species (ROS) compared to native CUR in ROS assay. Overall, the results obtained highlight the potential of NanoCUR to be developed in clinical settings due to its improved toxicity profile compared to CUR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据