4.6 Article

Alteration of Biomolecular Conformation by Aluminum-Implications for Protein Misfolding Disease

期刊

MOLECULES
卷 27, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27165123

关键词

aluminum; Alzheimer's disease (AD); biomolecules; adenosine triphosphate (ATP); histone linker proteins (H1 class); prion disease (PrD); protein folding disease

资金

  1. Translational Research Initiative Grants from LSUHSC
  2. Brown Foundation
  3. National Institutes of Aging (NIA) [AG18031, AG038834]
  4. Joe and Dorothy Dorsett Innovation in Science Healthy Aging Award

向作者/读者索取更多资源

Aluminum possesses unique properties that can negatively affect the structure and stability of important biomolecules. Despite its widespread presence, it is well-tolerated by all plant and animal species. Aluminum is implicated in the development of neurological diseases by altering the conformation of proteins.
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum's (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z(2)/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum-biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth's biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum's prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer's disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据