4.6 Article

Spectroscopic and Molecular Docking Studies of Cu(II), Ni(II), Co(II), and Mn(II) Complexes with Anticonvulsant Therapeutic Agent Gabapentin

期刊

MOLECULES
卷 27, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27134311

关键词

gabapentin; transition metals; spectroscopic; FTIR; electronic spectra; TEM

资金

  1. Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia [1-442-58]

向作者/读者索取更多资源

In this study, Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin drug were synthesized and characterized. The gabapentin ligand chelated as a bidentate ligand with the metal ions, forming monobasic metal:ligand complexes. The interaction between the gabapentin complexes and serotonin and dopamine receptors was investigated using molecular docking and molecular dynamics simulation.
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV-Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10(-3) M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the -NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)(3)(Cl)]center dot nH(2)O complexes (where n = 2-6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor-ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO -> LUMO of the metal complexes, were studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据