4.7 Article

H19 inhibition increases HDAC6 and regulates IRS1 levels and insulin signaling in the skeletal muscle during diabetes

期刊

MOLECULAR MEDICINE
卷 28, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s10020-022-00507-3

关键词

Epigenetics; lncRNA H19; HDAC6; Skeletal muscle; Insulin resistance; Diabetes; IRS1

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India

向作者/读者索取更多资源

This study found that the long non-coding RNA (lncRNA) H19 and HDAC6 exhibit inverse expression patterns in diabetic mice and cells, and inhibition of H19 leads to increased HDAC activity and levels. This is associated with downregulation of IRS1 levels, suggesting that the H19-HDAC6 axis may regulate cellular IRS1 levels. Restoring normal H19 levels could be a potential therapeutic strategy for insulin resistance and type 2 diabetes.
Background Histone deacetylases (HDACs) that catalyze removal of acetyl groups from histone proteins, are strongly associated with several diseases including diabetes, yet the precise regulatory events that control the levels and activity of the HDACs are not yet well elucidated. Methods Levels of H19 and HDACs were evaluated in skeletal muscles of normal and diabetic db/db mice by Western Blot analysis. C2C12 cells were differentiated and transfected with either the scramble or H19 siRNA and the levels of HDACs and Prkab2, Pfkfb3, Srebf1, Socs2, Irs1 and Ppp2r5b were assessed by Western Blot analysis and qRT-PCR, respectively. Levels of H9, HDAC6 and IRS1 were evaluated in skeletal muscles of scramble/ H19 siRNA injected mice and chow/HFD-fed mice. Results Our data show that the lncRNA H19 and HDAC6 exhibit inverse patterns of expression in the skeletal muscle of diabetic db/db mice and in C2C12 cells, H19 inhibition led to significant increase in HDAC activity and in the levels of HDAC6, both at the transcript and protein levels. This was associated with downregulation of IRS1 levels that were prevented in the presence of the HDAC inhibitor, SAHA, and HDAC6 siRNA suggesting the lncRNA H19-HDAC6 axis possibly regulates cellular IRS1 levels. Such patterns of H19, HDAC6 and IRS1 expression were also validated and confirmed in high fat diet-fed mice where as compared to normal chow-fed mice, H19 levels were significantly inhibited in the skeletal muscle of these mice and this was accompanied with elevated HDAC6 levels and decreased IRS1 levels. In-vivo inhibition of H19 led to significant increase in HDAC6 levels and this was associated with a decrease in IRS1 levels in the skeletal muscle. Conclusions Our results suggest a critical role for the lncRNA H19-HDAC6 axis in regulating IRS1 levels in the skeletal muscle during diabetes and therefore restoring normal H19 levels might hold a therapeutic potential for the management of aberrant skeletal muscle physiology during insulin resistance and type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据