4.4 Article

Modeling of microscale internal stresses in additively manufactured stainless steel

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-651X/ac8698

关键词

additive manufacturing; internal stresses; crystal plasticity

资金

  1. Office of Naval Research [N00014-18-1-2858]
  2. National Science Foundation [DMR-2004429, DMR2104933]

向作者/读者索取更多资源

We developed models to understand the microscale internal stresses in additively manufactured stainless steel, focusing on their back stress components. By considering printing and deformation-induced back stresses, as well as deformation-induced back stresses associated with grain boundaries, we were able to accurately simulate and measure the microscale back stresses in the material. These results provide important insights into the origins and evolution of microscale internal stresses in additively manufactured metallic materials.
Additively manufactured (AM) metallic materials often comprise as-printed dislocation cells inside grains. These dislocation cells can give rise to substantial microscale internal stresses in both initial undeformed and plastically deformed samples, thereby affecting the mechanical properties of AM metallic materials. Here we develop models of microscale internal stresses in AM stainless steel by focusing on their back stress components. Three sources of microscale back stresses are considered, including the printing and deformation-induced back stresses associated with as-printed dislocation cells as well as the deformation-induced back stresses associated with grain boundaries. We use a three-dimensional discrete dislocation dynamics model to demonstrate the manifestation of printing-induced back stresses. We adopt a dislocation pile-up model to evaluate the deformation-induced back stresses associated with as-printed dislocation cells. The extracted back stress relation from the pile-up model is incorporated into a crystal plasticity (CP) model that accounts for the other two sources of back stresses as well. The CP finite element simulation results agree with the experimentally measured tension-compression asymmetry and macroscopic back stress, the latter of which represents the effective resultant of microscale back stresses of different origins. Our results provide an in-depth understanding of the origins and evolution of microscale internal stresses in AM metallic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据