4.7 Article

Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion

期刊

MICROBIOLOGICAL RESEARCH
卷 260, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.micres.2022.127049

关键词

Glaciers; Cold habitat; Psychrotroph; Plant growth-promoting microorganism; Genome sequencing

资金

  1. Department of Science and Tech-nology (DST) [DST/TDT/WM/2019/43]
  2. DST-TDT Waste Management Technology program

向作者/读者索取更多资源

This study isolates cold-adapted bacteria with plant growth-promoting properties from a glacier ecosystem in the Sikkim Himalaya, suggesting their potential use in developing cold-active biofertilizers for mountain agriculture.
Commercial biofertilizers tend to be ineffective in cold mountainous regions due to reduced metabolic activity of the microbial inoculants under low temperatures. Cold-adapted glacier bacteria with plant growth-promoting (PGP) properties may prove significant in developing cold-active biofertilizers for improving mountain agriculture. With this perspective, the cultivable bacterial diversity was documented from the East Rathong glacier ecosystem lying above 3900 masl of Sikkim Himalaya. A total of 120 bacterial isolates affiliated to Gammaproteobacteria (53.33%), Bacteroidetes (16.66%), Actinobacteria (15.83%), Betaproteobacteria (6.66%), Alphaproteobacteria (4.16%), and Firmicutes (3.33%) were recovered. Fifty-two isolates showed many in vitro PGP activities of phosphate solubilization (9-100 mu g/mL), siderophore production (0.3-100 psu) and phytohormone indole acetic acid production (0.3-139 mu g/mL) at 10 degrees C. Plant-based bioassays revealed an enhancement of shoot length by 21%, 22%, and 13% in ERGS5:01, ERMR1:04, and ERMR1:05, and root length by 14%, 17%, 11%, and 22% in ERGS4:06, ERGS5:01, ERMR1:04, and ERMR1:05 treated seeds respectively. An increased shoot dry weight of 4-29% in ERMR1:05 and ERMR1:04, and root dry weight of 42-98% was found in all the treatments. Genome analysis of four bacteria from diverse genera predicted many genes involved in the bacterial PGP activity. Comparative genome study highlighted the presence of PGP-associated unique genes for glucose dehydrogenase, siderophore receptor, tryptophan synthase, phosphate metabolism (phoH, P, Q, R, U), nitrate and nitrite reductase, TonB-dependent receptor, spermidine/putrescine ABC transporter etc. in the representative bacteria. The expression levels of seven cold stress-responsive genes in the cold-adapted bacterium ERGS4:06 using real-time quantitative PCR (RT-qPCR) showed an upregulation of all these genes by 6-17% at 10 degrees C, and by 3-33% during cold-shock, which indicates the cold adaptation strategy of the bacterium. Overall, this study signifies the psychrotrophic bacterial diversity from an extreme glacier environment as a potential tool for improving plant growth under cold environmental stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据