4.5 Article

Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa

期刊

MICROBIAL PATHOGENESIS
卷 169, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2022.105654

关键词

Antimicrobial peptides; Biofilm; Type VI secretion System; Pseudomonas; Pyoverdine

资金

  1. Hyderabad Eye Research Foundation, LVPEI, India
  2. Indian Council of Medical Research [OMI-fellowship/4/2020-ECDI]

向作者/读者索取更多资源

This study investigated the role of host defense peptide S100A12 against Pseudomonas and observed its antimicrobial activity through immunohistochemistry and colony forming unit experiments. In a mouse model of Pseudomonas keratitis, S100A12 reduced corneal opacity and bacterial load. Further transcriptome analysis revealed that S100A12 inhibits multiple important pathways in Pseudomonas.
Pseudomonas aeruginosa is an opportunistic pathogen and is the major cause of corneal infections in India and worldwide. The increase in antimicrobial resistance among Pseudomonas has prompted rise in significant research to develop alternative therapeutics. Antimicrobial peptides (AMPs) are considered as potent alternatives to combat bacterial infections. In this study, we investigated the role of S100A12, a host defense peptide, against PAO1 and an ocular clinical isolate. Increased expression of S100A12 was observed in corneal tissues obtained from Pseudomonas keratitis patients by immunohistochemistry. S100A12 significantly inhibited growth of Pseudomonas in vitro as determined from colony forming units. Furthermore, recombinant S100A12 reduced the corneal opacity and the bacterial load in a mouse model of Pseudomonas keratitis. Transcriptome changes in PAO1 in response to S100A12 was investigated using RNA sequencing. The pathway analysis of transcriptome data revealed that S100A12 inhibits expression of genes involved in pyoverdine synthesis and biofilm formation. It also impedes several important pathways like redox, pyocyanin synthesis and type 6 secretion system (T6SS). The transcriptome data was further validated by checking the expression of several affected genes by quantitative PCR. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics to combat infection in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据