4.7 Article

Human growth hormone inclusion bodies present native-like secondary and tertiary structures which can be preserved by mild solubilization for refolding

期刊

MICROBIAL CELL FACTORIES
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12934-022-01887-1

关键词

Protein refolding; Inclusion bodies; Human growth hormone; High hydrostatic pressure; Alkaline pH

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, FAPESP [2015/02574-0]
  2. CAPES [88887.334462/2019-00]

向作者/读者索取更多资源

We have demonstrated that hGH-IBs possess native-like secondary and tertiary structures and that non-denaturing methods can lead to high yields of refolded protein. The refolding process described in this study is likely applicable to other proteins, and it may be particularly useful for reducing the pH required for alkaline solubilization.
Background Native-like secondary structures and biological activity have been described for proteins in inclusion bodies (IBs). Tertiary structure analysis, however, is hampered due to the necessity of mild solubilization conditions. Denaturing reagents used for IBs solubilization generally lead to the loss of these structures and to consequent reaggregation due to intermolecular interactions among exposed hydrophobic domains after removal of the solubilization reagent. The use of mild, non-denaturing solubilization processes that maintain existing structures could allow tertiary structure analysis and increase the efficiency of refolding. Results In this study we use a variety of biophysical methods to analyze protein structure in human growth hormone IBs (hGH-IBs). hGH-IBs present native-like secondary and tertiary structures, as shown by far and near-UV CD analysis. hGH-IBs present similar lambda(max) intrinsic Trp fluorescence to the native protein (334 nm), indicative of a native-like tertiary structure. Similar fluorescence behavior was also obtained for hGH solubilized from IBs and native hGH at pH 10.0 and 2.5 kbar and after decompression. hGH-IBs expressed in E. coli were extracted to high yield and purity (95%) and solubilized using non-denaturing conditions [2.4 kbar, 0.25 M arginine (pH 10), 10 mM DTT]. After decompression, the protein was incubated at pH 7.4 in the presence of the glutathione-oxidized glutathione (GSH-GSSG) pair which led to intramolecular disulfide bond formation and refolded hGH (81% yield). Conclusions We have shown that hGH-IBs present native-like secondary and tertiary structures and that non-denaturing methods that aim to preserve them can lead to high yields of refolded protein. It is likely that the refolding process described can be extended to different proteins and may be particularly useful to reduce the pH required for alkaline solubilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据