4.6 Article

Cobalt phthalocyanine-derived Co-C@C porous composites for tunable electromagnetic absorption

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 287, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2022.126308

关键词

Co-C@C nanocomposites; Tubular structure; Cobalt phthalocyanine; Polydopamine; Electromagnetic wave absorption

资金

  1. Natural Science Foundation of Jiangsu Province [BK20190413, BK20210616]
  2. National Defense Technology Innovation Special Zone Spark Project [2016300TS00911901]
  3. China Postdoctoral Science Foundation [2019M661825]
  4. Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies [EEST2021-2]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  6. National Natural Science Foundation of China [52171180, 51802154]

向作者/读者索取更多资源

The cobalt@carbon nanocomposites with a porous tubular structure exhibit excellent electromagnetic wave absorption performance due to their large specific surface area and abundant porosity. The Co-N bond on the surface of cobalt nanoparticles enhances the absorption performance.
The metal-carbon nanocomposites are widely applied to electromagnetic wave (EMW) absorption due to their good impedance matching characteristics and multiple attenuation mechanisms. Here, the cobalt@carbon (Co-C@C) composites with the porous tubular structure were prepared by calcining the polydopamine (PDA) coated porphyrin derivative cobalt phthalocyanine (CoPc). The heating temperature has a significant effect on the morphology, porosity, magnetization intensity, and EMW absorption performance. These results show that Co-C@C composites after heat treatment temperature at 800 C have the best EMW absorption performance because of their large specific surface area, abundant mesopores and macropores, and high magnetization. Meanwhile, the Co-N bond could generate at the surface of cobalt nanoparticles, resulting in an interfacial effect and enhancing polarization loss. The minimum reflection loss (RLmin) is-47.36 dB at 12.76 GHz and the effective absorption bandwidth (EAB) is 5 GHz. In addition, Co-C@C composites can be used as tunable EMW absorbers with superior performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据