4.4 Article

Expression and copper binding characteristics of Plasmodium falciparum cytochrome c oxidase assembly factor 11, Cox11

期刊

MALARIA JOURNAL
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12936-022-04188-5

关键词

Plasmodium; Malaria; Cox11; Cytochrome c oxidase; Copper

资金

  1. South African National Research Foundation
  2. University of KwaZulu-Natal Research Incentive Fund
  3. Ahmadu Bello University, Nigeria

向作者/读者索取更多资源

The study found that the malaria parasite expresses PfCox11 protein, which shares similar structural features and copper binding motifs with Cox11 from other species. PfCox11 is capable of binding copper and is predicted to transfer copper to the cytochrome c oxidase of the malaria parasite.
Background Copper is an essential metal for living organisms as a catalytic co-factor for important enzymes, like cytochrome c oxidase the final enzyme in the electron transport chain. Plasmodium falciparum parasites in infected red blood cells are killed by excess copper and development in erythrocytes is inhibited by copper chelators. Cytochrome c oxidase in yeast obtains copper for the Cu-B site in the Cox1 subunit from Cox11. Methods A 162 amino acid carboxy-terminal domain of the P. falciparum Cox11 ortholog (PfCox11Ct) was recombinantly expressed and the rMBPPfCox11Ct affinity purified. Copper binding was measured in vitro and in Escherichia coli host cells. Site directed mutagenesis was used to identify key copper binding cysteines. Antibodies confirmed the expression of the native protein. Results rMBPPfCox11Ct was expressed as a 62 kDa protein fused with the maltose binding protein and affinity purified. rMBPPfCox11Ct bound copper measured by: a bicinchoninic acid release assay; atomic absorption spectroscopy; a bacterial host growth inhibition assay; ascorbate oxidation inhibition and in a thermal shift assay. The cysteine 157 amino acid was shown to be important for in vitro copper binding by PfCox11whilst Cys 60 was not. The native protein was detected by antibodies against rMBPPfCox11Ct. Conclusions Plasmodium spp. express the PfCox11 protein which shares structural features and copper binding motifs with Cox11 from other species. PfCox11 binds copper and is, therefore, predicted to transfer copper to the Cu-B site of Plasmodium cytochrome c oxidase. Characterization of Plasmodium spp. proteins involved in copper metabolism will help sceintists understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据