4.6 Article

A Two-Phase Model for Adsorption from Solution Using Quartz Crystal Microbalance with Dissipation

期刊

LANGMUIR
卷 38, 期 33, 页码 10114-10127

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.2c00998

关键词

-

向作者/读者索取更多资源

The current methodologies for interpreting QCM-D data do not adequately describe the physics of solution adsorption, and a new self-consistent continuum model is developed to overcome these deficiencies.
Quartz crystal microbalance with dissipation (QCM-D) conveniently monitors mass and mechanical property changes of thin films on solid substrates with exquisite resolution. QCM-D is frequently used to measure dissolved solute/sol adsorption isotherms and kinetics. Unfortu-nately, currently available methodologies to interpret QCM-D data treat the adlayer as a homogeneous medium, which does not adequately describe solution-adsorption physics. Tethering of the adsorbate to the solid surface is not explicitly recognized, and the liquid solvent is included in the adsorbate mass, which is especially in error for low coverages. Consequently, the areal mass of adsorbate (i.e., solute adsorption) is overestimated. Further, friction is not considered between the bound adsorbate and the free solvent flowing in the adlayer. To overcome these deficiencies, we develop a two-phase (2P) continuum model that self-consistently determines adsorbate and liquid-solvent contributions and includes friction between the attached adsorbate and flowing liquid solvent. We then compare the proposed 2P model to those of Sauerbrey for a rigid adlayer and Voinova et al. for a viscoelastic-liquid adlayer. Effects of 2P-adlayer properties are examined on QCM-D-measured frequency and dissipation shifts, including adsorbate volume fraction and elasticity, adlayer thickness, and overtone number, thereby guiding data interpretation. We demonstrate that distinguishing between adsorbate adsorption and homogeneous-film adsorption is critical; failing to do so leads to incorrect adlayer mass and physical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据