4.7 Article

Improve individual treatment by comparing treatment benefits: cancer artificial intelligence survival analysis system for cervical carcinoma

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12967-022-03491-8

关键词

Cervical carcinoma; Artificial intelligence; Prognostic model; Cancer specific survival

资金

  1. Foshan Science and Technology Bureau [2020001004584]

向作者/读者索取更多资源

The current study aimed to develop a novel cancer artificial intelligence survival analysis system for predicting individual mortality risk curves for cervical carcinoma patients receiving different treatments. Three different artificial intelligence algorithms were used to develop prognostic models, and multiple independent influence factors were identified.
Purpose: The current study aimed to construct a novel cancer artificial intelligence survival analysis system for predicting the individual mortality risk curves for cervical carcinoma patients receiving different treatments. Methods: Study dataset (n = 14,946) was downloaded from Surveillance Epidemiology and End Results database. Accelerated failure time algorithm, multi-task logistic regression algorithm, and Cox proportional hazard regression algorithm were used to develop prognostic models for cancer specific survival of cervical carcinoma patients. Results: Multivariate Cox regression identified stage, PM, chemotherapy, Age, PT, and radiation_surgery as independent influence factors for cervical carcinoma patients. The concordance indexes of Cox model were 0.860, 0.849, and 0.848 for 12-month, 36-month, and 60-month in model dataset, whereas it were 0.881, 0.845, and 0.841 in validation dataset. The concordance indexes of accelerated failure time model were 0.861, 0.852, and 0.851 for 12-month, 36-month, and 60-month in model dataset, whereas it were 0.882, 0.847, and 0.846 in validation dataset. The concordance indexes of multi-task logistic regression model were 0.860, 0.863, and 0.861 for 12-month, 36-month, and 60-month in model dataset, whereas it were 0.880, 0.860, and 0.861 in validation dataset. Brier score indicated that these three prognostic models have good diagnostic accuracy for cervical carcinoma patients. The current research lacked independent external validation study. Conclusion: The current study developed a novel cancer artificial intelligence survival analysis system to provide individual mortality risk predictive curves for cervical carcinoma patients based on three different artificial intelligence algorithms. Cancer artificial intelligence survival analysis system could provide mortality percentage at specific time points and explore the actual treatment benefits under different treatments in four stages, which could help patient determine the best individualized treatment. Cancer artificial intelligence survival analysis system was available at: https://zhangzhiqiao15.shinyapps.io/Tumor_Artif.icial_Intelligence_Survival_Analysis_System/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据