4.7 Article

Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu

期刊

出版社

WILEY
DOI: 10.1002/jsfa.12175

关键词

Chinese Baijiu; fermentation starter; metagenomics; microorganism; microbial enzyme; saccharification

向作者/读者索取更多资源

The saccharification power and liquefaction power of different types of daqu were found to vary, with microbial saccharifying enzymes from various microbes playing a role in the process. The study identified differential genes and highlighted the differences in microbial communities between daqu types, providing insights into the saccharification functional genes of daqu.
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. (c) 2022 Society of Chemical Industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据