4.6 Article

The Debiased Spatial Whittle likelihood

出版社

WILEY
DOI: 10.1111/rssb.12539

关键词

aliasing; irregular boundaries; missing data; random fields; Whittle likelihood

资金

  1. European Research Council [CoG 2015-682172NETS]

向作者/读者索取更多资源

We propose a computationally and statistically efficient method to estimate the parameters of a stochastic covariance model observed on a regular spatial grid. Our method, called the Debiased Spatial Whittle likelihood, corrects the bias caused by boundary effects and aliasing and allows for missing data and irregular sampling boundaries. We provide a theoretical framework that ensures consistency and asymptotic normality in various practical settings, including missing data and non-Gaussian processes. The implementation guidelines ensure that the estimation procedure can be conducted in O(nlogn) operations, maintaining computational scalability for large datasets.
We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle likelihood, makes important corrections to the well-known Whittle likelihood to account for large sources of bias caused by boundary effects and aliasing. We generalize the approach to flexibly allow for significant volumes of missing data including those with lower-dimensional substructure, and for irregular sampling boundaries. We build a theoretical framework under relatively weak assumptions which ensures consistency and asymptotic normality in numerous practical settings including missing data and non-Gaussian processes. We also extend our consistency results to multivariate processes. We provide detailed implementation guidelines which ensure the estimation procedure can be conducted in O(nlogn) operations, where n is the number of points of the encapsulating rectangular grid, thus keeping the computational scalability of Fourier and Whittle-based methods for large data sets. We validate our procedure over a range of simulated and realworld settings, and compare with state-of-the-art alternatives, demonstrating the enduring practical appeal of Fourier-based methods, provided they are corrected by the procedures developed in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据