4.8 Article

Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 29, 页码 13254-13265

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c04081

关键词

-

资金

  1. Helen Co., Ltd
  2. Natural Sciences and Engineering Research Council of Canada (NSERC)
  3. Queen's University

向作者/读者索取更多资源

This study presents a catalyst regeneration strategy using an electrolysis method comprising alternating on and off operating regimes to increase the operating stability of a copper (Cu) catalyst. It demonstrates that this method can increase the operating lifetime and maintain high ethylene selectivity. Additionally, it shows the successful achievement of high ethylene selectivity in electrochemical CO2 reduction using a three-dimensional Cu gas diffusion electrode.
Electrochemical CO2 reduction (ECR) with industrially relevant current densities, high product selectivity, and long-term stability has been a long-sought goal. Unfortunately, copper (Cu) catalysts for producing valuable multicarbon (C2+) products undergo structural and morphological changes under ECR conditions, especially at high current densities, resulting in a rapid decrease in product selectivity. Herein, we report a catalyst regeneration strategy, one that employs an electrolysis method comprising alternating on and off operating regimes, to increase the operating stability of a Cu catalyst. We find that it increases operating lifetime many times, maintaining ethylene selectivity >= 40% for at least 200 h of electrolysis in neutral pH media at a current density of 150 mA cm(-2) using a flow cell. We also demonstrate ECR to ethylene at a current density of 1 A cm(-2) with ethylene selectivity >= 40% using a three-dimensional Cu gas diffusion electrode, finding that this system under these conditions is rendered stable for greater than 36 h. This work illustrates that Cu-based catalysts, once they have entered into the state conventionally considered to possess degraded catalytic activity, may be recovered to deliver high C-2(+) selectivity. We present evidence that the combination of short periods of electrolysis, which minimizes the morphological changes during on segments, with the progressive chemical oxidation of Cu atoms on the catalyst surface during off segments, united with the added effects of washing the accumulated salt and decreasing the catholyte temperature prolong together the catalyst's operating lifetime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据