4.7 Article

Bubble rise in molten glasses and silicate melts during heating and cooling cycles

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 105, 期 12, 页码 7238-7253

出版社

WILEY
DOI: 10.1111/jace.18680

关键词

experiments; fluid dynamics; Stokes; viscous liquid

资金

  1. Natural Environment Research Council [NE/N002954/1]
  2. European Research Council

向作者/读者索取更多资源

The Hadamard-Rybczynski equation describes the steady-state buoyant rise velocity of an unconfined spherical bubble in a viscous liquid and has been experimentally validated. Researchers extended this solution for non-isothermal conditions, considering time-dependent liquid viscosity, liquid and gas densities, and bubble radius, and validated it through experiments.
The Hadamard-Rybczynski equation describes the steady-state buoyant rise velocity of an unconfined spherical bubble in a viscous liquid. This solution has been experimentally validated for the case where the liquid viscosity is held constant. Here, we extend this result for non-isothermal conditions, by developing a solution for bubble position in which we account for the time-dependent liquid viscosity, liquid and gas densities, and bubble radius. We validate this solution using experiments in which spherical bubbles are created in a molten silicate liquid by cutting gas cavities into glass sheets, which are stacked, then heated through the glass transition interval. The bubble-bearing liquid, which has a strongly temperature-dependent viscosity, is subjected to various heating and cooling programs such that the bubble rise velocity varies through the experiment. We find that our predictions match the final observed position of the bubble measured in blocks of cooled glass to within the experimental uncertainty, even after the application of a complex temperature-time pathway. We explore applications of this solution for industrial, artistic, and natural volcanological applied problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据