4.5 Article

Brittle cataclastic process of fault rocks based on a large-displacement direct shear model realized with DEM

期刊

JOURNAL OF STRUCTURAL GEOLOGY
卷 161, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2022.104641

关键词

Cataclasis; Fault rocks; Friction; Brittle shear failure

资金

  1. National Natural Science Foundation of China [41972284and 42090054]
  2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protec-tion Independent Research Project [SKLGP2020Z005]

向作者/读者索取更多资源

This paper investigates the brittle cataclastic process of fault rocks, focusing on the structural evolution and mechanical behavior. A large-displacement direct shear model is proposed to simulate the process. The results indicate that the reduction in friction coefficient is caused by the crushing and rounding of rock fragments.
Fault rocks in the brittle regime are often the result of large-displacement shearing. Traditional direct shear tests that perform small displacements can only study one episode of the whole faulting process. Ring shear apparatuses that can achieve large-displacement shearing are mostly used to study incohesive soil or friction granular materials. The objective of this paper is to study the brittle cataclastic process of fault rocks from the damage of intact rock to the frictional movement of the incohesive cataclastic rocks. A large-displacement direct shear model with a constant contact area of fault walls based on the particle-based discrete element method is proposed to simulate the structural evolution and mechanical behavior of dry brittle fault rocks. The results show that the crushing and rounding of irregular fragments are responsible for the reduction in the friction coefficient. The sharp fall is due to the crushing of rock fragments, while a moderate decline indicates grain rotation in the postpeak stress-displacement curve. This model helps to understand the cataclasis of brittle fault rocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据