4.8 Article

Multiscale investigation of discharge rate dependence of capacity fade for lithium-ion battery

期刊

JOURNAL OF POWER SOURCES
卷 536, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2022.231516

关键词

Lithium-ion battery; Capacity fade; Discharge rate dependence; Anode degradation; Multiscale investigation

资金

  1. National Natural Science Foundation of China (NSFC) [52107230]

向作者/读者索取更多资源

This study reveals that low discharge rate leads to accelerated capacity fade, while high discharge rate results in more significant kinetic loss. It further identifies that the kinetic loss in high discharge cells primarily occurs in the cathode, while accelerated capacity fade in low discharge cells is mainly caused by degradation in the anode. SEM images also indicate worse interphases and dense agglomerated structure due to cycling the anode at a high potential.
Commercial 18,650 lithium-ion batteries are cycled at different discharge current rates. It reveals that an accelerated capacity fade occurs for cells at a low discharge rate which is attributed to the loss of lithium inventory (LLI) from the differential voltage analysis (DVA). Cells using high discharge rates exhibit more kinetic loss at the same capacity retention from the analysis of impedance. Characterization techniques, i.e., post-mortem analysis including scanning electron microscopy (SEM) and ex-situ x-ray diffraction (XRD), galvanostatic tests, and in-situ XRD on half-cells made with cathodes and anodes retrieved from the 18,650 batteries, are used to further address the degradation factors. It indicates that the kinetic loss of the high discharge cells can be ascribed to the cathode where more particles are cracked and pulverized. Degradation on the anode is the primary reason for accelerated capacity fade occurring at the low discharge rate. The low discharge current deepens the discharge depth leading the graphite accessing into a higher potential over de-lithiation. Worse interphases and dense agglomerated structure are found from SEM images, which is deemed to result from the anode cycled at a high potential where large volumetric change happens as evidenced by the cycling of new anode half-cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据