4.8 Article

Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

Stable, high-performance, dendrite-free, seawater-based aqueous batteries

Huajun Tian et al.

Summary: This study proposes a universal strategy to overcome metal anode instability issues in aqueous batteries by designing alloyed materials, using Zn-M alloys as model systems. The results show that Zn-Mn alloy anodes can achieve stability over thousands of cycles even under harsh electrochemical conditions, setting a new milestone for developing durable electrodes for aqueous batteries and beyond.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2

Zhao Cai et al.

Summary: Metal anodes are a promising choice for high energy density rechargeable batteries, but face challenges like volume variation and side reactions. A novel interdigitated metal/solid electrolyte composite electrode was fabricated using a replacement reaction, providing a stable host structure and preventing side reactions. This design demonstrated stable electrochemical performance and low overpotential, outperforming other reported metal electrodes.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Ultrafast Zinc-Ion-Conductor Interface toward High-Rate and Stable Zinc Metal Batteries

Huibo Yan et al.

Summary: A Zn-based montmorillonite interlayer was constructed to improve the performance of rechargeable aqueous zinc ion batteries, including alleviating corrosion, suppressing dendritic growth, and stabilizing capacity. Experimental results demonstrated that under the designed MMT-Zn coating, the batteries exhibited stable performance and long cycle life.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Applied

Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte

Miao Zhou et al.

Summary: A new artificial Sc2O3 protective film has been developed to construct a novel interface for Zn anode, inhibiting interfacial side reactions and improving cycling stability and coulombic efficiency. The research demonstrates the importance of rational design of anode materials for developing high-performance Zn anodes with long lifespan and high efficiency.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Chemistry, Physical

Mechanistic Insights of Mg2+-Electrolyte Additive for High-Energy and Long-Life Zinc-Ion Hybrid Capacitors

Pinji Wang et al.

Summary: The study proposes a dual charge storage mechanism for zinc-ion hybrid capacitors, enabled by the additive Mg2+ in the aqueous ZnSO4 electrolyte, leading to enhanced energy storage capacity and extended cycle life.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Multidisciplinary

Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries

Libei Yuan et al.

Summary: Aqueous Zn-ion batteries have attracted significant attention for their safety, cost effectiveness, and environmental friendliness, but challenges at the Zn/electrolyte interphase, such as dendrite growth and side reactions, still need to be addressed. Research in interfacial engineering has become a growing area of interest, providing effective evaluation techniques and strategies for improvement.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries

Pengcheng Liang et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode

Canbin Deng et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Physical

Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries

Recep Yuksel et al.

ADVANCED ENERGY MATERIALS (2020)

Review Multidisciplinary Sciences

Roadmap for advanced aqueous batteries: From design of materials to applications

Dongliang Chao et al.

SCIENCE ADVANCES (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Biochemistry & Molecular Biology

Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use

Katerina Strejcova et al.

MOLECULES (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

ZnCl2 Water-in-Salt Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode

Lu Zhang et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Chemistry, Multidisciplinary

An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage

Dongliang Chao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries

Shuo Huang et al.

CHEMISTRY-A EUROPEAN JOURNAL (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Nanoscience & Nanotechnology

Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery

Chao Shen et al.

ACS APPLIED MATERIALS & INTERFACES (2018)

Review Chemistry, Multidisciplinary

30 Years of Lithium-Ion Batteries

Matthew Li et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Review Chemistry, Multidisciplinary

Recent Advances in Zn-Ion Batteries

Ming Song et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Review Chemistry, Multidisciplinary

Before Li Ion Batteries

Martin Winter et al.

CHEMICAL REVIEWS (2018)

Article Chemistry, Multidisciplinary

A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode

Chong Zhang et al.

CHEMICAL COMMUNICATIONS (2018)

Review Electrochemistry

Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries

Kian Kerman et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2017)

Article Multidisciplinary Sciences

Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion

Joseph F. Parker et al.

SCIENCE (2017)

Article Multidisciplinary Sciences

Building better batteries

M. Armand et al.

NATURE (2008)