4.7 Article

ORANGE negatively regulates flowering time in Arabidopsis thaliana

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 274, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2022.153719

关键词

Arabidopsis thaliana; Delayed-flowering; Flowering time; Photoperiod pathway; ORANGE (OR)

资金

  1. State Key Basic Research Project of China [2013CB127004]

向作者/读者索取更多资源

Floral transition is regulated by multiple pathways, and the OR protein negatively regulates flowering by repressing the expression of key flowering genes, independent of vernalization or GA-dependent pathways.
Floral transition is an important process in plant development, which is regulated by at least four flowering pathways: the photoperiod, vernalization, autonomous, and gibberellin (GA)-dependent pathways. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was originally cloned from the cauliflower or mutant, which has distinct phenotypes of the carotenoid-accumulating curd, the elongated petioles, and the delayed flowering time. OR has been demonstrated to interact with phytoene synthase for carotenoid biosynthesis in plastids and with eukaryotic release factor 1-2 (eRF1-2) in the nucleus for the first two phenotypes, respectively. In this study, we showed that overexpression of OR in Arabidopsis thaliana resulted in a delayed-flowering phenotype resembling the cauliflower or mutant. Our results indicated that OR negatively regulates the expression of the flowering integrator genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Both GA3 and vernalization treatments could not rescue the delayed-flowering phenotype of the OR-overexpressing seedlings, suggesting the repression of floral transition by OR does not depend on SOC1-mediated vernalization or GA-dependent pathways. Moreover, our analysis revealed that transcripts of OR and FT fluctuated in opposite directions diurnally, and the overexpression of OR repressed the accumulation of CONSTANS (CO), FT, and SOC1 transcripts in a 16 h/8 h light/dark long-day cycle. Our results indicated the possibility that OR represses flowering through the CO-FT-SOC1-mediated photoperiodic flowering pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据