4.8 Article

Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 13, 期 25, 页码 5838-5844

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.2c01614

关键词

-

向作者/读者索取更多资源

By designing and preparing highly pure bicarbazole materials, high-performance ultralong room-temperature phosphorescence (RTP) has been achieved. The material also exhibits photoactivated delayed fluorescence and RTP properties, making it a promising tool for rejuvenating carbazole-based RTP.
Ultralong room-temperature phosphorescence (RTP) is greatly important in a series of applications, but obtaining RTP from metal-free organic materials is still an enormous challenge due to the spin-forbidden nature of triplet excitons. Because of its electron-rich nature and easy derivatization, carbazole (Cz) is widely used to build organic RTP and thermally activated delayed fluorescence (TADF) materials. However, Liu et al. (Nat. Mater. 2021, 20, 175) recently demonstrated that the RTP of Cz is induced by charge traps of its isomeric impurity in commercial sources. Here, on the basis of the classical El-Sayed rule and the recently discovered intersystem crossing promotion principles (twisted structure and charge transfer), we designed and prepared highly pure (>99.9%) (R/S)-octahydrobinaphthyl-based bicarbazoles (BiCz) for high-performance RTP (Phi(P) = 23%; tau(p) = 1.09 s). Interestingly, BiCz exhibited photoactivated TADF and RTP in isolated and aggregated states, respectively, and thus would be an efficient tool for rejuvenating Cz-based RTP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据