4.8 Article

Pathway toward Optical Cycling and Laser Cooling of Functionalized Arenes

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 13, 期 30, 页码 7029-7035

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.2c01430

关键词

-

资金

  1. Keck Foundation
  2. DOE, National Science Foundation [PHY-1255526, PHY-1415560, PHY-1912555, CHE-1900555, DGE-1650604]
  3. Army Research Office [W911NF-15-1-0121, W911NF-14-1-0378, W911NF- 13-1-0213, W911NF-17-1-0071]
  4. NSF GFRP [DGE-2034835]
  5. CUA

向作者/读者索取更多资源

Rapid and repeated photon cycling has enabled precision metrology and quantum information systems. However, extending optical cycling to structurally complex molecules presents challenges. Recent work has explored the possibility of cycling larger molecules, pointing to a promising path for full quantum control of complex molecules.
Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-, SrO-, and CaO-and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据