4.7 Article

Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 135, 期 -, 页码 221-230

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2022.06.047

关键词

Local chemical inhomogeneity; Cluster expansion; TiZrNb-based high-entropy alloy; Chemical short-range order; Compositional fluctuation

向作者/读者索取更多资源

Multi-principal element solid solutions are prone to developing local chemical inhomogeneities, which can impact their mechanical properties.
Multi-principal element solid solutions are prone to develop local chemical inhomogeneities, i.e., chemical order/clustering and/or compositional undulation. However, these structural details from short-range (first couple of nearest-neighbor atomic shells) to nanometer length scale are very challenging to resolve in both experimental characterization and computer simulations. For instance, Monte Carlo modeling based on density-functional-theory calculations is severely limited by the sample size and the simulation steps practical in the simulations. Adopting the cluster expansion approach, here we systematically reveal the local chemical inhomogeneity, including chemical order and compositional fluctuation, in three representative equiatomic TiZrNb-based body-centered cubic refractory high-entropy alloys (HEAs): TiZrNb, TiZrHfNb and TiZrHfNbTa. Ti-Zr pairs are found to exhibit the highest degree of chemical preference among all atomic pairs. Such chemical short-range order (CSRO) induces an accompanying compositional undulation, both extending to characteristic dimensions of the order of one nanometer. The chemical inhomogeneity trend uncovered for this series of TiZrNb-based HEAs is expected to impact their mechanical properties; e.g., incorporating the CSRO effects in a current model significantly improves its agreement with experimental measured yield strength. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据