4.5 Article

Additive Manufacturing of Compliant Mechanisms for Deployable Aerospace Structures

期刊

出版社

SPRINGER
DOI: 10.1007/s11665-022-07050-6

关键词

aerospace; additive manufacturing; mechanical systems; mechanical testing; steel

资金

  1. National Aeronautics and Space Administration [80NM0018D0004]

向作者/读者索取更多资源

In the past decade, the use of complex deployable structures on CubeSats and large-scale spacecraft has become increasingly common. Traditional manufacturing challenges have led to advancements in metal additive manufacturing technology, opening up new possibilities for aerospace hardware.
In the past 10 years, complex deployable structures have become common on CubeSats and large-scale spacecraft. As new missions are pursued, there is an increased need for more mass and volume efficient deployments. Over the same period, metal additive manufacturing (AM) has enabled new forms of spaceflight hardware. However, AM of compliant mechanisms has not been fully leveraged for deployable aerospace structures. The Surface Water Ocean Topography and NASA-ISRO Synthetic Aperture Radar mission missions launching in 2022 both utilize large deployable masts. Each mast deployment is driven by numerous spring and damper mechanisms. Because of volume constraints, the spring mechanisms designed utilize high aspect ratio rectangular cross section torsion springs that represent the state of the art of manufacturing. This extreme spring design resulted in manufacturing difficulties and hardware failures during ground mechanism testing. Upon re-examining the mechanism design, AM enables torque performance, mass, and complexity improvements. AM allows for torsion spring cross sections not otherwise possible with traditional spring manufacturing methods. Prototype springs of various cross sections were printed in maraging steel and tested. Results confirmed design analysis, and doubling of the spring constant was achieved when compared to the traditional springs. The use of AM also allows springs to be built monolithically with surrounding structure. Design, manufacturing, and test findings will be discussed along with future implications for deployable aerospace structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据