4.7 Article

Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 435, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.129022

关键词

Uranium; Wastewater treatment; Amine-bridged diacetamide; Crystal structure; Mesoporous silica

资金

  1. National Natural Science Foundation of China [21906153]

向作者/读者索取更多资源

This study successfully prepared mesoporous silica materials with high selectivity, which can effectively reduce wastewater contaminated with uranium. The experimental results showed that the material had a strong affinity for uranium under low acidic conditions and exhibited good reusability.
A major environmental concern related to nuclear energy is wastewater contaminated with uranium, thus necessitating the development of pollutant-reducing materials with efficiency and effectiveness. Herein, highly selective mesoporous silicas functionalized with amine-bridged diacetamide ligands SBA-15-ABDMA were prepared. Different spectroscopy techniques were used to probe the chemical environment and reactivity of the chelating ligands before and after sorption. The results showed that the functionalized SBA-15-ABDMA had a strong affinity for uranium at low pH (pH = 3) with desirable sorption capacity (68.82 mg/g) and good reusability (> 5). It showed excellent separation performance with a high distribution coefficient (K-d,K-U > 10(5) mL/g) and separation factors SFU/Ln > 1000 at a pH of 3.5 in the presence of lanthanide nuclides, alkaline earth metal and transition metal ions. In particular, SiO(2)spheres-ABDMA was used as a column material, which achieved excellent recovery of U(VI) (> 98%) and good reusability for samples of simulated mining and nuclear industries wastewater. XPS and crystallography studies clearly illustrated the tridentate coordination mode of U(VI)/PEABDMA and the mechanism and origin behind the high selectivity for U.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据