4.7 Article

Horizontal planetary mechanochemical method for rapid and efficient remediation of high-concentration lindane-contaminated soils in an alkaline environment

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 436, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.129078

关键词

Horizontal planetary ball mill; Mechanochemical degradation; Dechlorination; Organochlorine pesticides; Brown soil

资金

  1. National Key Research and Devel-opment Program of China [2019YFC1805602]

向作者/读者索取更多资源

This study developed a horizontal planetary mechanochemical method for rapid and efficient degradation of lindane in soil in an alkaline environment. The experimental results demonstrated that the method can effectively degrade lindane of different concentrations and the degradation mechanism was explained through theoretical calculations.
Lindane is a persistent organic pollutant that has attracted worldwide attention because of its threat to human health and environmental security. A horizontal planetary mechanochemical method was developed for rapid and efficient degradation of lindane in soil in an alkaline environment. Under the condition of a very low reagent-to-soil ratio (R = 2%), ball-to-powder ratio (CR = 6:1), rotation speed (r = 300 rpm) and high soil single treatment capacity (SC = 60 g), the lindane in four typical soils (~ 100 mg/kg) can be degraded up to 96.30% in 10 min. This method can also remediate high-concentration lindane-contaminated soil (833 +/- 26 mg/kg). The experimental results and theoretical calculations proved that the stepwise dechlorination and final carbonization of lindane in soil are mainly attributed to the combined action of mechanical energy and alkalinity. The bimolecular elimination (E2) reaction was the first step of lindane destruction. Subsequently, the unimolecular elimination (E1) reaction tended to occur with the weakening of alkalinity. Then, benzene was obtained through stepwise hydrogenolysis reaction. The last was the generation of carbon substances by fragmentation or condensation of benzene rings. This work proposes a practical remediation technology for organic contaminated soil and improves the understanding of the degradation pathways of lindane in soil in alkali-assisted mechanochemical system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据