4.7 Article

Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 433, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128835

关键词

Methylmercury; Geobacter sulfurreducens PCA; Desulfovibrio desulfuricans ND132; Algae Chlorella vulgaris

资金

  1. Office of Biological and Environmental Research within the Office of Science of the U.S. Department of Energy (DOE), as part of the Mercury Science Focus Area project at the Oak Ridge National Laboratory (ORNL)
  2. Chinese Scholarship Council (CSC) of China
  3. National Natural Science Foundation of China [NSFC 41671485]
  4. Natural Science Foundation of Shandong Province, China [ZR2017MD008]
  5. DOE [DE-AC05-00OR22725]

向作者/读者索取更多资源

This study investigated the impact of phytoplankton on Hg(II) methylation and found that phytoplankton inhibits Hg(II) methylation by FeRB but enhances methylation by SRB D. desulfuricans ND132.
Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg (II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据