4.7 Article

Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 433, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128822

关键词

Cr(VI); Extracellular polymeric substance; Tryptophan; Bioreduction

资金

  1. National Natural Science Foundation of China [52125002, 51908270]
  2. Natural Sci-ence Foundation of Jiangxi Province [20212ACB213006]
  3. National Key Research and Development Program of China [2019YFC1907900]

向作者/读者索取更多资源

This study found that extracellular polymeric substances (EPS) play an important role in reducing hexavalent chromium, shedding light on the mechanisms of EPS. The researchers discovered that adding EPS and tryptophan significantly improved the reduction efficiency of hexavalent chromium. These findings provide new insights and strategies for removing heavy metal contamination in future applications.
Extracellular polymeric substances (EPS) have exhibited promising advantages in mitigating heavy metal contamination, e.g., single-valent silver (Ag(I)), trivalent gold (Au(III)), and hexavalent chromium (Cr(VI)). However, knowledge of the specific substrate in EPSs that supports Cr(VI) reduction has remained elusive. Here, we isolated a novel Cr(VI)-reducing strain with self-mediating properties in an aquatic environment with various pH values to investigate the mechanisms. After analysis by a batch assay coupled with X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) spectroscopic techniques, it was found that Cr(VI) was reduced by the strain and soluble-EPS (S-EPS), and then, organo-trivalent chromium (organo-Cr(III)) was successfully formed. In addition, compared with other components of the strain, the strain and S-EPS completely removed Cr(VI), and the S-EPS exhibited a positive effect on Cr(VI) reduction with a strong monotonic correlation (R2 = 0.999, p = 9.03 x 10-5), indicating that the reduction is an EPS-dependent process. Specifically, the Cr(VI) reduction efficiency was enhanced to 48.85% and 99.4% after EPS and EPS plus tryptophan were added; their respective efficiencies were 3.94 and 8.02 times higher than that of the control assay in which the reductant was depleted. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that the tryptophan concentration concomitantly decreased by 61.54%. These findings highlighted the importance of S-EPS and tryptophan and improved our understanding of EPS for Cr(VI) reduction, which might provide a novel strategy for decontaminating targeted heavy metals in future applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据