4.7 Article

Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 434, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.128892

关键词

H-1 NMR; N-15 isotope labelling; Electrocatalysis; Nitrate reduction; Reaction pathway

资金

  1. National Natural Science Foundation of China [22005288, 22176131]

向作者/读者索取更多资源

A copper single-atom catalyst (Cu-N-C) is demonstrated to be active and selective for nitrate reduction to ammonia. By enhancing nitrite adsorption and restraining N-N coupling, this catalyst effectively inhibits the formation of toxic products, while achieving high yield rate and selectivity for nitrate reduction.
Electrocatalytic nitrate reduction reaction (NO3RR), as a promising alternative to the Haber-Bosh process, provides new opportunities for ammonia (NH3) production from the environmental and energy viewpoint. However, the NH3 yield rate and selectivity for NO3RR are still limited due to the lack of efficient electrocatalysts. Herein, we demonstrate an active and selective copper single-atom catalyst (Cu-N-C) for nitrate reduction to NH3. The complete conversion of nitrate (50 mg L-1 NO-3-N) was achieved at -1.5 V vs. SCE with a high NH3 yield rate (9.23 mg h-1 mg- 1 cat.) and selectivity (94%). Remarkably, Cu-N-C dramatically inhibited the formation of toxic nitrite and double-nitrogen products due to the enhanced nitrite adsorption and restrained N-N coupling that led to nitrate deep reduction to NH3. The remaining nitrate (0.06 mg L-1) and nitrite (1 mg L-1) fully meet the drinking-water standards. Density functional theory simulations reveal that the single-site nature of Cu-N-C facilitated the reduction of HNO*3 to NO*2 and NH*2 to NH3, thus leading to the selective nitrate reduction to NH3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据