4.8 Article

Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels

期刊

JOURNAL OF CONTROLLED RELEASE
卷 228, 期 -, 页码 159-169

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2016.02.047

关键词

Thermoresponsive nanogel; Skin penetration; Cellular uptake; Dermal delivery

资金

  1. [Sonderforschungsbereich 1112]

向作者/读者索取更多资源

Nanogels are water soluble cross-linked polymer networks with nanometer size dimensions that can be designed to incorporate different types of compounds and are promising carrier systems for drugs and biological molecules. In this study, the interactions of thermoresponsive nanogels (tNGs) with the human skin barrier and underlying epidermis cells were investigated with the aim of using such macromolecules to improve dermal and transdermal drug delivery. The investigated tNGs were made of acrylated dendritic polyglycerol, as water soluble cross-linker, and of oligo ethylene glycol methacrylate (OEGMA) as subunit conferring thermoresponsive properties. tNGs with different polymer transition temperatures were tagged with Rhodamine B (RhdB) and analyzed for their physicochemical properties. We found that tNGs with cloud point temperatures (Tcps) of 38 degrees C (tNG-RhdB-T38) lost softness (measured by PeakForce quantitative nanomechanics, QNM) and aggregated to bigger sized particles (measured as increase of particle average size by dynamic light scattering, DLS) when temperature changed from 15 to 37 degrees C. On the contrary, at the same conditions, tNGs with higher Tcps (tNG-RhdB-T55) did not show any significant changes of these characteristics. Applied on excised human skin, both tNGs penetrated deep in the stratum corneum(SC). Small amounts of tNGs were detected also in cells of the viable epidermis. Interestingly, whereas tNG softness correlated with higher penetration in SC, a better cellular uptake was observed for the thermoresponsive tNG-RhdB-T38. We conclude that soft nanocarriers possess a high SC penetration ability and that thermoresponsive nanogels are attractive carrier systems for the targeting of drugs to epidermis cells. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据