4.7 Article

Hydrodynamic performance of oscillating elastic propulsors with tapered thickness

期刊

JOURNAL OF FLUID MECHANICS
卷 944, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.470

关键词

swimming/flying; propulsion; flow-structure interactions

资金

  1. National Science Foundation [CBET-1705739]
  2. Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR180038]

向作者/读者索取更多资源

Using fluid-structure interaction computational modelling, this study investigates the hydrodynamic performance of bio-inspired elastic propulsors with tapered thickness that oscillate in an incompressible Newtonian fluid at Reynolds number Re = 2000. The simulations reveal that the tapered propulsors can outperform uniformly thick propulsors in terms of hydrodynamic efficiency and thrust by modulating the acoustic black hole effect. This enhanced performance is linked to the ability of the tapered propulsors to generate travelling waves with a large amplitude displacement at the trailing edge.
Using fluid-structure interaction computational modelling, the hydrodynamic performance of bio-inspired elastic propulsors with tapered thickness that oscillate in an incompressible Newtonian fluid at Reynolds number Re = 2000 is investigated. The thickness tapering leads to an acoustic black hole effect at the trailing edge of the propulsor that slows down and attenuates flexural waves, thereby minimizing the flexural wave reflection and enhancing travelling wave propulsion. The simulations reveal that, by tuning the propulsor thickness profile modulating the acoustic black hole effect, the tapered propulsors can be designed to vastly outperform the uniformly thick propulsors in terms of the hydrodynamic efficiency and thrust, especially for the post-resonance frequencies. The enhanced hydrodynamic performance is directly linked to the ability of the tapered propulsors to generate travelling waves with a large amplitude displacement at the trailing edge. The results have implications for the development of highly efficient bio-mimetic robotic swimmers and, more generally, the better understanding of the undulatory aquatic locomotion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据