4.7 Article

How does two-way coupling modify particle settling and the role of multiscale preferential sweeping?

期刊

JOURNAL OF FLUID MECHANICS
卷 947, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.615

关键词

multiphase and particle-laden flows

资金

  1. National Aeronautics and Space Administration's Weather and Atmospheric Dynamics program [NASA 80NSSC20K0912]
  2. National Science Foundation (NSF) [ACI-1548562]

向作者/读者索取更多资源

This study investigates the settling mechanism of particles in two-way coupled flows using direct numerical simulations, and reveals the contribution of eddies of different scales to particle settling. In contrast to previous studies, the preferential sweeping mechanism still plays an important role in two-way coupled flows.
For one-way coupled (1WC) flows, Tom & Bragg (J. Fluid Mech., vol. 871, 2019, pp. 244-270) advanced the analysis of Maxey (J. Fluid Mech., vol. 174, 1987, pp. 441-465), which applied to weakly inertial particles, to particles of arbitrary inertia, and the new theoretical result revealed the role that different scales play in the preferential sweeping mechanism that leads to enhanced particle settling in turbulent flows. Monchaux & Dejoan (Phys. Rev. Fluids, vol. 2, 2017, 104302) showed using direct numerical simulations that, while for low particle loading the effect of two-way coupling (2WC) on the global flow statistics is weak, 2WC enables the particles to drag the fluid in their vicinity down with them, significantly enhancing their settling, and they argued that 2WC suppresses the preferential sweeping mechanism. We explore this further by considering the impact of 2WC on the contribution made by eddies of different sizes on the particle settling. In agreement with Monchaux & Dejoan, we show that even for low loading, 2WC strongly enhances particle settling, and we show how 2WC modifies the contribution from different flow scales. However, contrary to their study, we show that preferential sweeping remains important in 2WC flows. In particular, for both 1WC and 2WC flows, the settling enhancement due to turbulence is dominated by contributions from particles in straining regions of the flow, but for the 2WC case, the particles in these regions also drag the fluid down with them, leading to an enhancement of their settling compared with the 1WC case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据