4.2 Article

Pre- and post-association barriers to host switching in sympatric mutualists

期刊

JOURNAL OF EVOLUTIONARY BIOLOGY
卷 35, 期 7, 页码 962-972

出版社

WILEY
DOI: 10.1111/jeb.14028

关键词

constraints; evolution of co-operation; microbes

资金

  1. National Science Foundation [DEB-1906465, DEB-0919015]

向作者/读者索取更多资源

Coevolution between mutualists can lead to barriers to host switching. The study found both pre- and post-association barriers, with some bacteria being highly virulent to non-native hosts and some nematode hosts carrying fewer cells of non-native bacteria. No barriers to symbiont switching were detected between nematode species within the same clade.
Coevolution between mutualists can lead to reciprocal specialization, potentially causing barriers to host switching. Here, we conducted assays to identify pre- and post-association barriers to host switching by endosymbiotic bacteria, both within and between two sympatric nematode clades. In nature, Steinernema nematodes and Xenorhabdus bacteria form an obligate mutualism. Free-living juvenile nematodes carry Xenorhabdus in a specialized intestinal receptacle. When nematodes enter an insect, they release the bacteria into the insect hemocoel. The bacteria aid in killing the insect and facilitate nematode reproduction. Prior to dispersing from the insect, juvenile nematodes must form an association with their symbionts; the bacteria must adhere to the intestinal receptacle. We tested for pre-association barriers by comparing the effects of bacterial strains on native verses non-native nematodes via their virulence towards, nutritional support of, and ability to associate with different nematode species. We then assessed post-association barriers by measuring the relative fitness of nematodes carrying each strain of bacteria. We found evidence for both pre- and post-association barriers between nematode clades. Specifically, some bacteria were highly virulent to non-native hosts, and some nematode hosts carried fewer cells of non-native bacteria, creating pre-association barriers. In addition, reduced infection success and lower nematode reproduction were identified as post-association barriers. No barriers to symbiont switching were detected between nematode species within the same clade. Overall, our study suggests a framework that could be used to generate predictions for the evolution of barriers to host switching in this and other systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据